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The mixing layer : deterministic models 
of a turbulent flow. Part 2. The origin of the 

three-dimensional motion 
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Experimental evidence suggests that in the turbulent mixing layer the fundamental 
mechanism of growth is two-dimensional and little affected by the presence of 
vigorous three-dimensional motion. To quantify this apparent property and study 
the growth of streamwise vorticity, we write for the velocity field 

where U is two-dimensional and u is three-dimensional. In a first version of the 
problem U is independent of u, while in the second U is the spanwise average of V.  
I n  both cases the equation for u is linearized around U. The equations for U and u 
are solved simultaneously by a finite-difference calculation starting with a slightly 
disturbed parallel shear layer. 

The solutions provide a detailed description of the growth of the three-dimensional 
motion. They show that its characteristics are dictated by the distribution of 
spanwise vorticity which results from roll-up and pairing. Pairing inhibits its growth. 
The solutions also demonstrate that even when the three-dimensional flow attains 
large amplitudes it has a negligible effect on the interaction of spanwise vortices and 
thus on the growth of the layer. 

1. Introduction 
I n  Part 1 (Corcos & Sherman 1984) we suggested that a comprehensive description 

of the turbulent shear layer might profitably be given by constructing first a 
deterministic prototype of the flow. Statistical properties of the real flow would then 
be obtained by averaging over a suitably chosen random superposition of such 
deterministic solutions. 

To proceed this way downplays the dynamic importance of randomness and 
requires that the prototype exhibit essentially all the other properties of the real flow, 
including in particular both the range of lengthscales encountered in i t  and the ability 
which this flow shares with turbulence in general, greatly to enhance molecular 
diffusion. As is well known, both of these attributes are associated with the 
three-dimensionality of instantaneous realizations of turbulence and in particular 
with%he effect in the vorticity equation of the term (51.V) u (where 51 and u are the 
vorticity and velocity vectors). 

Direct experimental evidence of the existence of non-planar components of the 
motion is of course also available, and in fact abounds, dating back to the original 
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investigation of Liepman & Laufer (1949). But the nature of such motions is not easily 
inferred from the bulk of the measurements which have been made a t  one or two 
stationary points and which have been reduced to  yield conventional statistical 
averages. For these see e.g. Wygnanski & Fiedler (1970). More recent experiments 
(Konrad 1977; Breidenthal 1981; Bernal 1981) have begun to  suggest some of the 
features of the three-dimensional flow even though they, like their predecessors, have 
been hampered by the great difficulty inherent in capturing instantaneously panoramic 
realizations of dynamically significant quantities, such as the deformation rate and 
the vorticity. I n  fact, i t  is quite likely that the lack of a consensus on the presence 
(or absence) of a typical realization is due in large part to the uncertainty with which 
one has been able to relate dynamical properties which allow the motion to be inferred 
to those quantities like smoke (or visible products of diffusion-controlled reactions) 
whose instantaneous distribution one can record, at least in a plane. 

Yet a theoretical study of the three-dimensional motion can profitably make use 
of some of our very fragmentary experimental knowledge. While in the initial 
unidirectional shear flow, i t  may be assumed that perturbations are generally 
three-dimensional, further downstream, as we have noted in Part  1 ,  the instantaneous 
spanwise averages of large-scale features of a turbulent shear layer are remarkably 
similar to those of a strictly two-dimensional flow. This suggests that  the environment 
in which the three-dimensional motion arises out of small perturbations is that 
described in Part 1 .  To ascribe a dominant and quasi-autonomous role to the 
two-dimensional motion is, a t  this stage, no more than a working hypothesis; but 
i t  can be subjected to  a consistency check: it is part of the burden of a theoretical 
three-dimensional model based on i t  to demonstrate that  the new motion does not 
destroy or seriously alter, but mostly accommodates itself to, the two-dimensional flow 
described in Par t  I .  

As mentioned there, the condition for this to be the case need not necessarily be 
that the amplitude of the three-dimensional motion be small. Nevertheless, i t  is 
instructive to  study its dynamical origin by first assuming it small, as i t  must be 
initially, and by linearizing the equations describing its growth around the time- 
dependent nonlinear equation for the quasi-autonomous two-dimensional motion. 
Such an inquiry is related to, though distinct from, the classical infinitesimal stability 
theory whose application to  the free shear layer we discuss now. 

1 . l .  Three-dimensional perturbations on  a parallel shear $ow 
This is the well-known theory (see e.g. Stuart 1963) for the second term in an 
expansion 

q = q ( O )  + + e2q(2) + . . . etc. ( 1 . 1 )  

of the velocity q (with a corresponding expansion for the pressure) in powers of the 
amplitude c. The expansion generates a sequence of approximations to the Navier- 
Stokes equations, i.e. 

where n = 0, 1 ,  ... etc., p is the pressure, v the kinematic viscosity. q ( O )  is the steady 
unidirectional flow q ( O )  = C, Uo(z) .  Since the solution for q(') will be used in $1.3 as 
the initial condition for another type of approximattion, we review it  here. x is the 
streamwise and y the spanwise coordinate, z is perpendicular to both. We now use 
the characteristic velocity U ,  = limz+, Uo(z)  and length 8, = U,(aUo/aq)&x to 
non-dimensionalize all quantities. 
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For n = 1,  (1.2) admits solutions for q(’) with components 

(:)I( z:) expi(ax+Py-act). 
w = w1 

ul, vl, w1 are functions of z ,  a and P are chosen real, while c is complex. If m2 = a2 +P2, 
ul, vl, w1 are given by the eigensolutions of the linear equation 

1 
( U o - c )  (wT-m2wl)- Ugw, = --(w;”’-~m2w~+m4wl), 

aR 
together with the solutions of the non-homogeneous equation 

1 
( u o - C ) g + - ( g ’ ~ - m 2 g )  = w1 u’. 

aR 

( 1 . 4 ~ )  

(1 .4b)  

I n  (1.4) R = U ,  c$/v, and w1 and g are functions of the parameters m and aR and 
the variable z. I n  particular they are independent of the value of Pla for fixed values 
of m and aR. Primes denote differentiation with respect to  z. 

A composite solution describing waves standing in the spanwise direction can be 
constructed by taking the half-sum of the left-running ( + P)  and right-running ( -/I) 
solutions for u, v, w corresponding to a single solution of (1.4a, b). For such waves: 

ia 
( 1 . 5 ~ )  

v = -sin -P Py[w; - g ]  exp [ia(z - ct)], (1.5b) 
m2 

w = cos~yw,exp[ia(x-ct)]. ( 1 . 5 ~ )  

For an appropriate range of m, solutions of the form assumed above grow in time. 
The non-dimensional growth rate has the form 

r~ E Im - = -G(m,aR). r;R> : 
A plot of the function u for an error-function profile Uo(z)  is given in figure 1 for R = 50 
and 100 and a = 0.43. 

The significance of (1.6) is that, m remaining constant, and if we ignore the weak 
dependence of r~ on the parameter aR when the latter exceeds say 50, the growth 
rate of a three-dimensional perturbation is smaller by the factor alm than that of 
a two-dimensional perturbation (B = 0, a = m). Now the growth rate u of a planar 
disturbance is known to reach a maximum for a value of m such that 0 < m < 1 ,  and 
it is clear from (1.6) that  no perturbation for which /3 + 0 can match this growth rate. 
Thus classical infinitesimal stability theory indicates that initially any three- 
dimensional perturbation grows less rapidly than some planar one. But this result 
soon contributes to  the inadequacy for our purposes of the classical approach. For 
it implies that  even before three-dimensional perturbations have grown sufficiently 
large to  require a nonlinear description, the two-dimensional perturbations which 
have grown side by side with them, having grown faster, are likely to have seriously 
distorted the base flow around which the former were linearized. A modicum of 
progress can be made by solving for q(2) in (1.2) as was done, in particular, by Benney 
(1961), who showed that this term in the expansion includes among other interactions 
that between two-dimensional and skewed waves. But the conclusions of such an 
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FIGURE 1. The initial growth rate u of three-dimensional perturbations as a function of the spanwise 
wavenumber. The base flow is an error-function profile U,(Z) ,  the streamwise wavenumber is 
a = 0.43. 0, R = 50; 0, R = 100. 

analysis (Corcos 1979) are only suggestive of the later behaviour of the flow : the first 
two terms of the expansion can be a close approximation to the solution only fore < 1 
(in which case the second-order term is a minor correction to the first), whereas, as 
shown in Part 1,  perturbations of the original parallel flow acquire an amplitude of 
order unity in time of order tU, /h x 1 ,  where h = 2nai/a. 

1.2. Three-dimensional perturbations on a row of diffuse vortices 

The inability of classical theory to account properly for the rapid evolution of the 
two-dimensional base flow to a state which is very different from the initial one has 
led Pierrehumbert & Widnall (1982) to  study the three-dimensional instability of a 
steady flow of a different kind: an x-wise infinite row of diffuse vortices with vorticity 
distribution U,k(l-A2) a =  

(cosh kz + A cos k ~ ) ~  ’ 

where 0 6 A 6 1 .  This distribution satisfies the steady Euler equations (Stuart 1967) 
and has been discussed in Part  1. Pierrehumbert & Widnall superpose on this flow 
infinitesimal and inviscid perturbations of the form 

d(x,z)exp [gt+i(ax+/3y)l, (1.8) 
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FIGURE 2. After Pierrehumbert & Widnall (1982) : the initial growth rate ~7 of three-dimensional 
‘pairing’ perturbations. The base flow is a row of Stuart vortices. The parameter A is a measure 
of the vortex concentration. The streamwise wavelength of the perturbation is twice the vortex 
spacing. 

where a, ,4 and u are real. This leads to a two-dimensional eigenvalue problem for 
#(x, t )  which is solved numerically. The two main results reported by the authors are 
as follows. 

( a )  When a = sk, i.e. for three-dimensional subharmonic instability, the growth 
rate has a maximum for p = 0 (two-dimensional case) and decreases rapidly as /3 
increases. Figure 2 is a plot of the growth rate IS as a function of the two-dimensional 
vorticity concentration parameter A with the spanwise wavenumber /? as a parameter. 
It shows that the value of u drops rapidly as p increases especially beyond P/a = 1 .O 
and for A > 0.25.  Now A = 0.25 corresponds to rather diffuse vortices for which less 
than 59 yo of the vorticity is found within the cat’s-eyes and the cat’s-eye semiheight 
is 0.177 x 2 x l k .  According to the results presented in Part 1, a value of A more typical 
of a rolled-up vorticity layer for R 2 50 is A = 0.6, for which figure 2 suggests that  
only disturbances with long spanwise wavelengths have a growth rate at all 
comparable to the two-dimensional ones. Thus the initial instability associated with 
coalescence or pairing is preferentially two-dimensional, though pairing disturbances 
with spanwise wavelengths three or four times as large as the vortex spacing should 
be frequently seen according to this model. 

( b )  When the streamwise periodicity of the perturbation is imposed by the base 
flow (a = 0) (so that all Stuart vortices are perturbed in identical fashion) the 
instability is necessarily three-dimensional : the perturbations are neutrally stable for 
p = 0. Their growth rate reaches a maximum for a value of the ratio /3/k which 
increases with the value of the concentration parameter A .  But the growth rate 
decreases only gradually as the spanwise wavenumber increases beyond the optimum 
value for growth. This mode of instability thus allows perturbations to grow on 
concentrated vortices even when the perturbation spanwise wavelength is too short 
to allow growth on a parallel shear layer. Pierrehumbert & Widnall termed this new 
instability translative and suggested that i t  is responsible for the spanwise oscillations 
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and streamwise streaks of visible reaction products in Breidenthal’s ( 1981) experiments 
with a mixing layer. 

These results are new and informative. The identification of an instability that is 
quite distinct both from the Orr-Sommerfeld and from the pairing kind is particularly 
significant. But it is difficult to infer from them with confidence how small 
three-dimensional perturbations evolve in the shear layer. The difficulty is the same 
as that discussed earlier in connection with the classical analysis of parallel shear flow : 
there is no justification for assuming that the base flow is steady, since the 
characteristic timescale for its own instability is a t  least initially shorter than that 
of the three-dimensional instability. Thus the limitations inherent in the linearized 
analysis of perturbations are here also compounded by an unrealistic assumption 
about the flow which gives rise to the instability considered. More specifically, we 
note the following. 

(i) It is not clear how the modes discovered by the authors are related in time to 
the growing modes given by the classical theory which must be relevant a t  an earlier 
stage of the layer evolution. 

(ii) The assumed vorticity distribution of the model base flow is substantially 
different from that which develops from the initial-value problem of the two- 
dimensional shear layer, especially a t  large Reynolds numbers. This can be seen by 
comparing the results of Part 1 with (1.7) above : the Stuart vortices are symmetric 
with respect to both midplanes 2 = 0 and z = 0, while the rolled-up mixing layer is 
a row of vorticity spirals with only point symmetry; for the instability described 
under (b), coalescence, a major redistribution of the spanwise vorticity of the base 
flow is ignored. 

(iii) Finally, the assumption of a steady base flow implies an exponential or at least 
a monotonic growth or decay rate for linearized perturbations, whereas comparison 
of the two eigenvalue problems (§§1.1 and 1.2), each one with a different steady base 
flow leads to the inference that, as the base flow evolves, some perturbations which 
were initially stable become unstable so that conversely some others which are found 
unstable in such an analysis may well become stable at some later stage of the 
evolution of the base flow. 

2. An alternative approach 
An approach which avoids the difficulties mentioned above, which is consistent with 

the point of view developed in 9 1 and which is computationally as economical as that 
followed by Pierrehumbert & Widnall is as follows. 

2.1. The model 

If V and l7 are the velocity vector and the pressure respectively, we split them as 
follows : 

V ( z ,  y, z ,  t )  = U(2, 2, t )  + 4 2 ,  y, z ,  t ) ,  (2.1 a) 

n ( x ,  y, z, t )  = P(x, 2, t )  + p ( z ,  y, 2 ,  t ) ,  (2.1 b) 

where U = 2, U + 2, W is alternatively the solution of two differential equations in 
two versions of the flow. The first is 

U,+(UV) U+p-lVP = VVU, (2.2~) 

(2.26) 

and the second is 

u, + (U-V) U+p-lVP- vv2u = -- 
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where L is a suitable interval defined later. According to  ( 2 . 2 ~ )  U is given 
independently of the coexistence of the three-dimensional field u, while according to 
(2 .2b )  U is the spanwise average of the total velocity vector V .  In  both cases the 
three-dimensional part of the velocity, i.e. u = 2, u + 2, v + 2, w satisfies 

U , + ( U ' V )  U+(U-V)u+p-1Vp = VVZU, ( 2 . 3 )  

an approximation to the exact equation for u obtained from the Navier-Stokes 
equation for V after splitting according to ( 2 . 1 )  by linearizing u around the time- and 
space-dependent two-dimensional field U. 

It follows from the linearity of (3 .3 )  that if u andp are represented by Fourier series 
or integrals in the spanwise variable y, no interaction takes place between the Fourier 
components so that each component can be solved independently. Thus if 

) (2 .4 )  
u = a(x, z ,  t)  cospy, v = 6(x, z ,  t )  sinpy, w = &(x, z ,  t )  cospy, 

p = @(X> 2, t )  cospy 

(in which case L = 2n/P  in ( 2 . 2 b ) ) ,  (2 .3 )  involves only the two space variables 2 and 
z and the parameter p. Then the complexity of the joint solution of ( 2 . 2 ~  or b) and 
(2 .3 )  is numerically comparable to  that for the two-dimensional problem (2 .2 )  alone, 
the number of numerical operations required being roughly doubled. 

The right-hand side of (2 .2  b ) ,  with L = 2 n / p  is obtained directly at every time step 
from the solution of (2 .3 )  a t  the previous time step. 

The numerical scheme is that used in Part 1 .  The grid has 64 mesh points in the 
x-direction and 81 in the z-direction over an interval = 1.25 x the grid length. 

A comparison of the solutions of system ( 2 . 2 a ) ,  ( 2 . 3 )  with those of system ( 2 . 2 b ) ,  
(2 .3 )  yields a direct evaluation of the effect of the three-dimensional motion on the 
spanwise-averaged properties of the layer and also reveals whether the evolution of 
the three-dimensional flow is substantially different when the two- and three- 
dimensional motions are coupled. 

2.2 .  Initial conditions 

The initial values for U and u describe the superposition of 
(a )  a parallel flow 

U, = 2, U ,  erf - , (3 
the result of the viscous diffusion of a uniform vortex sheet; 

i.e. solutions of ( 1 . 4 ~ )  with m = at,  /3 = 0 ;  
(b) eigensolutions of the linearized form of ( 2 . 2 ~ )  with U = 2, U,(z)as in Part 1 ,  

(c) eigensolutions of (l.4a, b )  with U = U,(z), a = a3, /3 =+ 0. 
The required eigensolutions are generated by an efficient algorithm which is 

incorporated in the program but for which the vertical range zmin 6 z < zmax is 
divided into 600 intervals. 

2.3 .  Boundary conditions 

These are periodic in x (over a length that is the smallest common multiple of 2n/a, 
and 2 n / a 3 ) ,  periodic in y (with v = 0 on y = f nn/p, n = 0 , 1 , 2 ,  ... etc.) and such that 
u and Uf2, U ,  + O  as z+ f 03. Since the last conditions are in fact imposed at  
z = fz,,, (as though there were two conveyor belts there), they do not exclude the 
occasional generation of very weak boundary layers in the immediate neighbourhood 
of the upper and lower margins of the grid. 
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Case R a t )  af) 

1 50 0.43 - 

2 50 0.43 - 

3 50 0.43 - 
4 50 0.43 - 

5a 100 0.43 - 

5 50 0.43 0.215 
6 50 0.43 0.215 
7 50 0.43 0.215 
8 50 0.43 0.215 
9 50 0.43 0.215 

10 50 0.43 0.215 

0.43 1.25 1 

0.43 0.50 Q 
0.43 0.90 Q 
0.43 1.59 4 
0.43 1.25 Q 

0.215 0.5 Q 
0.43 1.25 Q 
0.43 0.50 4 

0.215 1.73 3 

0.43 0.50 3 

0.43 0.50 1 

TABLE 1 

Equations used 

(2.2a) and (2.3) 
(2.2a) and (2.3) 
(2.2a) and (2.3) 
(2.2a) and (2.3) 
(2.2a) and (2.3) 
(2.2a) and (2.3) 
(2.2a) and (2.3) 
(2.2a) and (2.3) 
(2.2a) and (2.3) 
(2.2b) and (2.3) 
(2.2b) and (2.3) 

2.4. Parameters 

These include a2, as, /3, R and the amplitudes of all the initial eigenfunctions. 
For the two-dimensional flow U,  if a single periodic perturbation is introduced 

initially, a2 = 0.43, which corresponds approximately to the fastest initial growth for 
the assumed initial profile. This condition allows only growth and roll-up of the base 
flow. When two planar perturbations are introduced initially, we have chosen 
ail) = 0.43 and ai2) = 0.215. The presence of the first subharmonic ai2) allows one 
pairing or coalescence to occur after roll-up (see Part  1). 

For the three-dimensional flow u, the streamwise wavenumber a3 was chosen equal 
to a t )  or to ai2). R = 50 for all runs. This was judged after some experimentation (case 
5a)  to be the largest acceptable Reynolds number for the mesh size used. Solutions 
were calculated for a range of values of /3. The initial amplitudes were small enough 
for the numerical solutions to  reproduce for early times the growth rate of Orr- 
Sommerfeld theory, though larger than might be achieved experimentally near the 
origin of a mixed layer issued from the merger of two quiet streams with laminar 
boundary layers on the upstream splitter plate. A typical value of the maxi- 
mum root-mean-square amplitude of the initial fluctuation is uf = 1OP2AU, where 
AU = 2U,. For U ,  whenever two initial values of a, were used, the amplitude of the 
subharmonic was half that  of the fundamental. For the three-dimensional velocity 
I(, [dl = alWI, where a = + o r  1 .  

The reference velocity and length used to  non-dimensionalize all variables are U ,  
and h = 271/ai1). Thus non-dimensional time 7 = tU,/h. Since for all cases 
up) = a2 = 0.43, h = 14.68, and the grid area is either 1 x 1.25 (cases 1,  2, 3, 4, 5 a )  
or 2 x 2.50 (cases 5, 6, 7 ,  8, 9, 10). Table 1 identifies the cases that were calculated. 

2.5. Results for an independent base $ow 
We now discuss joint solutions of ( 2 . 2 ~ )  and (2.3) (cases 1-8) for which the base flow 
U is independent of u. 

2.5.1. The energetics of the three-dimensional motion 

We define the local kinetic-energy density of the base flow as 

( U -  V)Z+ w2 

2 uz, e2 = 3 
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FIQURE 3. The kinetic energy of the base flow U and of the three-dimensional perturbation u as 
functions of time. The initial two-dimensional perturbation is a single wave. The base flow (0 )  is 
independent of u and the same for all cases. For u : 0 ,  case 1 ; 0 , 2  ; A, 3 ; 0 , 4  (see table 1) .  Indicated 
slopes at T = 0 from Orr-Sommerfeld theory. 

where u(z,7) is the average of U over the length of the grid. The spanwise average 
of the kinetic energy density associated with the three-dimensional component u of 
V is 

1, = 2.- 
4 urn + 6 2  + ii~)>. 2 3  

The integrals of e2 and &e3 over the grid are & ( T )  and E3(7).  The spanwise average 
of the local rate a t  which kinetic energy is transferred from the base flow to u is given 

The integral of br is P,. 
Figure 3 plots E, and E, as functions of time for cases 1 4  (roll-up). The initial 

growth rate agrees well with that given by Orr-Sommerfeld theory (indicated as a 
slope a t  7 = 0). According to the latter, with u3 = 0.43 and R = 50, P/a = 1.59 
(case 4) corresponds to a neutrally stable wave. Initially, as is clear from both the 
calculations and Orr-Sommerfeld theory, the growth rate increases monotonically as 
P/u decreases. But, as the two-dimensional flow evolves, the character of the 
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FIQURE 4. The kinetic energy of the base flow U and of the three-dimensional perturbation u as 
functions of time. The initial two-dimensional perturbation is the sum of a wave and its 
subharmonic. The base flow (0 )  is independent of u and the same for all cases. For u :  0, case 5 ;  
0 ,  6 ;  A, 7 ;  v, 8 (see table 1). 

two-dimensional inst'ability evidently changes : the growth rat,e for small spanwise 
wavenumbers decreases somewhat while that for the larger values of /? increases. At 
T z 1.5 the growth rate is about the same for all values of /3 chosen (0.5 < /? < 1.59), 
including that for the initially stable wave. 

This result is qualitatively consistent with that of Pierrehumbert & Widnall(l981) 
for the translative instability. During the late stages of the roll-up of the base flow 
(T > 2.0) and in the absence of a subharmonic perturbation, the kinetic energy of that 
motion ceases to increase (for a discussion see e.g. Corcos & Sherman 1976), but the 
growth of the three-dimensional perturbation continues a t  about the same rate. This 
is additional evidence that the nature of the three-dimensional instability has been 
modified by the evolution of the base flow. 

In  figure 4 the same quantities are plotted, but the base flow is allowed to roll up 
and to pair once. As a result the kinetic energy of the base flow continues to increase 
until coalescence has occurred (T = 3.5). Here we note that coalescence has a striking 
effect on the instability of the three-dimensional motion. This is readily apparent on 
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FIGURE 5. The rate of transfer of kinetic energy from U to u. Roll-up and pairing c a s e s : ~ ,  5 ;  
V, 6;  +, 7 ;  0, 8;  0,  roll-up only, case 2 (see table 1) .  

figure 4 for the two calculations (P/a = 0.5; /3/a = 1.25) which we carried out till 
r = 4.0. The cause of this temporary stabilization of u can be traced to a radical 
decrease in the net energy extracted by the Reynolds stress of the three-dimensional 
motion from the base flow. Figure 5 shows that in all cases involving pairing (unlike 
case 2 shown for comparison), this energy production P, drops precipitously beyond 
r = 2.5, i.e. as the two primary spanwise vortices rotate around and press against 
each other. 

In summary, roll-up, i.e. the concentration of spanwise vorticity into a regular 
array of diffuse vortices, gives rise to a new instability which allows shorter spanwise 
perturbations to grow in such a way that all the vortices are identically distorted, 
but coalescence, which rotates these vortices around each other and modulates their 
separation distance, halts this instability a t  least temporarily. 

2.5.2. The local evolution 

The transition from parallel-shear-flow instability to translative instability and the 
effect of coalescence on the latter are readily apparent from the evolution of the field 
values of e3 and p,. Quantities displayed a t  r = 0 are always calculated directly from 
the eigenfunctions for the parallel flow. For the roll-up we use case 2 (/3/a3 = 0.5) as 
an example. Contours of constant values of e3 in the (2 ,  2)-plane are shown on figures 
6 (a ,  b )  for r = 0 and r = 2.0, together with a map of contours of the spanwise vorticity 
Q of the base flow at T = 2.0. The periodic pattern associated with the weak vorticity 
wave a t  r = 0 has evolved in such a way that where Q is small (left and right margins), 
the kinetic energy associated with u is also small. High values of e3 are found only 
a t  the centre of the spanwise vortex. Note also a slight ridge of kinetic energy along 
the direction of principal axes of positive strain rate issuing from left and right 
stagnation points. These are associated with the very localized, quasi-unidirectional 
intense vorticity found in these regions (see figure 11 b ) .  Figures 7 (a, b )  show contours 
of production rate for the same case. These also become strongly centred on the inner 



78 G. M .  Corcos and S .  J .  Lin 

10 20 30 40 50 60 

FIGURE 6 (a, b).  For caption see facing page. 

part of the spanwise vortex core. This suggests that the translative instability is an 
instability of the vortex core. 

While the maps of e3 and p ,  depend in their details on the value of Pla,, they all 
exhibit the features described here. 

For the roll-up and coalescence, we use case 7 and show e3 and p ,  a t  7 = 0, 2.0 and 
3.0 in figures 8(a-c) and 9(a-c). Here again, the cehtres of kinetic energy and of 
production rate of this energy faithfully follow the two spanwise vortices. It is also 
clear that  as the braids become more completely depleted of spanwise vorticity 
(figure 146) very little of the kinetic energy of the three-dimensional motion is 
produced there. 

The effect of pairing on the new instability is striking in figure 10 (case 8,7 = 3.25); 
weak production persists in the braids but the whole core has been temporarily 
stabilized so that, within it, production is negative. At later times production is 
renewed, but i t  has not reached its former level a t  the end of the computation (7 = 4), 
at which time a second pairing would be occurring (see Part  1 )  if a second subharmonic 
perturbation ak3) were present. 

When the value of a3 is equal to  that of the subharmonic aiz) as in cases 5 and 6, 
the streamwise periodicity of the fundamental a?) is rapidly impressed on the longer 
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FIGURE 6. The local kinetic energy associated with u during roll-up (case 2). Contours of constant 
value in the (z, +plane: (a) 7 = 0; ( b )  7 = 2.0. Contours o f  constant value of  the vorticity associated 
with U at 7 = 2.0 are shown on (c). 

three-dimensional perturbation, so that, around 7 = 2.0, the latter almost appears as 
if the value of its initial streamwise wavenumber were that of the fundamental. Later, 
its history through pairing is not notably different from that of the other cases. Thus 
cases 5 and 6, which might have been expected to resemble the cases of helical pairing 
instability calculated by Pierrehumbert & Widnall (1982) are in fact quite different. 

3. The nature of the vorticity field 
Let 

v x  Ur Ja = 2 , 8 ,  v x u  = 0 3 8 + 2 , w 2 ,  u = ii+e,v, 

where cl, and ii are vectors in the (2, %)-plane and 
term 6 the streamwise vorticity. 

is the spanwise unit vector. We 

The evolution equations for cl, and w2 which are consistent with (2.3) are 

(3.2) 

where 

aii 
(+2)cl, = nY+(cl,'v) u, 

(;-+ = -ii*VL?+Q--, aY 
av 

~a 
Dt at 
- = -+ U V .  
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FIQURE 7 .  The local rate of transfer of kinetic energy from U to I( during roll-up (case 2). 
Contours of constant value in the (x, %)-plane: ( a )  7 = 0 ;  ( b )  7 = 2.0. 

Let r be the circulation of u around a loop W :  

T r  u-ds. 

Denote by dr /d t  the rate of change of r as the loop is advected by the base flow 
velocity U. Then use of Stokes’ theorem, (3.3) and a few tensor identities leads to 

1 

(3.3) 

where n is the unit normal to the element of surface d A ,  and A is a surface bounded 

Now choose the loop % so that i t  initially lies in a surface whose normal is 
everywhere perpendicular to  the y-axis. 

The loop will then remain at all times imbedded in such a surface according to our 
definition of d/dt and o2 will not contribute to the circulation r, around such a loop. 
We then get 

by %. 

dt = @ A  (Rg+vV2d) .ndA.  (3.4) 

The sole source for this circulation associated with the streamwise vorticity 6 is 
therefore Q&i/ay. Hence this term may also be identified as the origin of the 
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FIQURE 8. The local kinetic energy associated with u during roll-up and pairing (case 7) .  
Contours of constant value in the (2, %)-plane: (a )  T = 0; ( b )  2.0; (c) 3.0. 

streamwise vorticity in (3. l ) ,  while the second right-hand term enhances and redirects 
the streamwise vorticity already present, by means of the plane deformation of the 
base flow. I n  particular these equations indicate that streamwise vorticity cannot 
continue to  be fed by interaction with the base flow wherever in the mixing layer 
the spanwise vorticity of that  flow disappears. The streamwise vorticity that is 
created earlier in those regions, i.e. before the spanwise vorticity has migrated to the 
cores, may and does increase, but only as a result of the strain of the base flow and 
without change in circulation. 

On the other hand, wherever, as in the rather large neighbourhood of the stagnation 
points, the direction of the (base-flow) strain field evolves only slowly, strain causes 
both oz and the component of 6 normal to the axis of principal positive deformation 
to disappear as well as S2; thus one should expect near the stagnation points 
essentially straight vortices of constant circulation lined up with the braids, as soon 
as these have been depleted of base-flow spanwise vorticity. 

Figures 11 (a,  b)  show the distribution of streamwise vorticity 6 for case (2 )  a t  T = 0 
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FIGURE 9. The local rate of transfer of kinetic energy from U to u during roll-up and pairing (case 
7) .  Contours of constant value in the (z,z)-plane. (a )  7 = 0;  (6) 2.0; ( c )  3.0. For 7 = 3.0 the base-flow 
vorticity contours are shown on figure 14(b). 

and at 7 = 2. 43 is depicted by an arrow whose length and tip size are proportional 
to 161. Contours of spanwise vorticity i2 a t  time 7 = 2.0 (figure 6c) do not exhibit 
well-formed braids, and a substantial amount of vorticity remains in the neighbour- 
hood of the stagnation points. This is partly due to  the low value of R in these 
calculations, but more to the fact that  for roll-up, instability leads to  braids only if 
a < 0.2. This point is discussed in Corcos & Sherman (1976). Thus, in the present case, 
according to (3.4) the circulation of ii around the stagnation points should continue 
to increase, and the calculations confirm this inference. Nevertheless the typical 
deformation field around the stagnation points (a saddle) is already well-established, 
since 52 has a strong maximum a t  the centre of figure 6 (c) and the orientation of the 
streamwise vorticity near the stagnation points already coincides with the principal 
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FIQURE 10. The effect of pairing on the translative instability: the local rate of transfer of kinetic 
energy from U to u during pairing; case 8, r = 3.25. Dotted contours denote negative rates. 

axes of positive strain. Within the core one is struck by the uniformity of the 
orientation of w" which must be that of the principal axis of strain in that region. 

The spanwise periodic pattern of w2 which modulates the distribution of 52 is shown 
on figure 12 for 7 = 2.5. This pattern is typical of all the roll-up cases studied. Near 
the stagnation point, w2 is quite small, as expected. Elsewhere the distribution is such 
as to displace the vorticity maximum either towards the backward or slow stream 
and upstream or towards the forward or faster stream and downstream. The 
displacement (figure 13) periodic in y and identical for the spanwise vortices is 
analogous to that found by Pierrehumbert & Widnall (1982) for the translative 
instability. This displacement vector of the vorticity maximum in the (2, z)-plane 
makes an angle with the x-axis which is found to increase with /?/a3. 

When the base-flow evolution includes one pairing, the pattern of streamwise 
vorticity (?, is more complex. The braids of the base flow are well-formed and narrow 
as soon as pairing occurs. Near the stagnation points, the direction of (?, is accurately 
that of the braids, but within the cores streamwise vorticity appears folded several 
times. This reflects the more eventful evolution of the strain field created by the two 
precessing spanwise vortices of the base flow. Contours of constant magnitude of (?, 

are shown for case (7) on figure 14(a) for 7 = 3.0, while figure 14(b) shows the 
distribution of 52 a t  the same time. Only a few arrows are shown on figure 14 (a )  for 
clarity. They indicate the direction and magnitude of streamwise vorticity at special 
points: (a) the stagnation points and the centre of symmetry of the picture, which 
are regions of minimum spanwise vorticity and very large strain; in both cases the 
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FIGURE 11. The projection c3 of the vorticity V x u on to the (z, %)-plane; roll-up (case 2): 
(a) 7 = 0 ;  ( b )  7 = 2.0. The distribution of i2 a t  7 = 2.0 is shown on figure S(C).  

vector h3 is aligned with the direction of the principal (positive) strain; and ( b )  the 
centres of the two coalescing vortices, i.e. spanwise vorticity maxima where 6 points 
approximately 45' from the direction of the prevailing principal strain axes in the 
core. The latter rotate in time with the two precessing spanwise vortices. 

is particularly large along the braids and 
a t  the two spanwise vortex centres, the thickness of the fluid layers which rotate 
coherently around axes in the (z,z)-plane is quite small. For the case a t  hand 
(/3/a3 = 0.5, a3 = a2(l) = 0.43) this means that the streamwise vorticity occurs in thin 
layers elongated in the spanwise directi0n.t Within the braids there is only one such 
layer, but within the cores several layers are stacked and give rise to counterrotating 
flows. 

We note that, while the magnitude of 

4. The coupled case 
So far, the base flow U(z,  z ,  t )  has been obtained by solving equation (2 .2a) ,  so that 

the three-dimensional field u was not allowed to influence its evolution. We now repeat 
some of these calculations but instead solve (2 .2b )  together with (2.3). This is done 
for two different initial amplitude ratios, ISl/lmI = 4 (case 9) and lSl/l@l = 1 (case 
10). The results for both U and u can then be compared with those for case 7 ,  which 
is otherwise identical, but for which U is independent of U. 

t Part 3 (Lin & Corcos 1984) studies the nonlinear evolution of similar layers. 
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FIGURE 12. The spanwise-periodic perturbation of SZ. Contours of constant values of the 

perturbations in the (2, %)-plane; case 2, 7 = 2.5. 

Since the magnitude of 1u1 depends almost linearly and the Reynolds stresses 
quadratically on the initial amplitude of the three-dimensional eigenfunctions, i t  is 
important to ensure that these are large enough to yield representative three- 
dimensional motions. This requirement seems to be satisfied at least for case 10 and 
for r > 2.0. For this case, the average kinetic energy of the three-dimensional 
perturbation over a domain of height = (1.25 x the grid length) is 0.0028Au2, where 
AU = 2U,. The local maximum value of e3 = 0.088, the maximum value of 
v = 0.22AU, which is comparable to the experimental values (e.g. Wygnanski & 
Fiedler 1970). Pr is large. Even a t  r = 3.0, i t  averages 0.016 units of VIA, while, a t  
r = 2.5, Pr z 0.024V/A. At these rates i t  would take four to seven units of time r to 
transfer to the three-dimensional motion an amount of energy equal to  that of the 
base flow. At 7 = 3.0, the maximum value of lwzl = 5.5, that  of 161 = 7.8, while that 
of IR is 8.0. 

4.1, The effect of the interaction on the spanwise-averaged properties 

Figures 15(a-c) compare the spanwise-averaged vorticity 32 for the three cases for 
7 = 3.0. It is seen that the equivorticity contours for cases 7 and 9 can hardly be 
distinguished. For case 10 some differences occur : the braids are somewhat wider and 
slightly asymmetric ; in the cores there are several vorticity maxima ; the highest value 
of the average spanwise vorticity does not occur quite at the same pair of points as 
in case (7),  but inward of these, nearer the centre of the figure. But these minor 
changes do not affect the dynamical interaction between the spanwise vortices and 
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FIGURE 13. Sketch of the periodic displacement of the spanwise vorticity Q+w,. 
The angle v increases with the ratio P/a. 

FIGURE 14. (a) Magnitude of the streamwise vorticity 5, roll-up and pairing; case 7, 7 = 3.0. 
(b) The spanwise vorticity Q of the base flow at the same time. 
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FIQURE 15. Comparison of the spanwise averaged vorticity : 
(a)  case 7 (no coupling); (b )  9; (c) 10. 

their coalescence : the pairing process occurs according to precisely the same timescale 
in all three cases. This is easily seen by plotting the angle 8 made by the line joining 
the two pairing vortices with the x-axis as a function of time. This clockwise-rotating 
line can be viewed as a clock for the pairing. The plot of 8 on figure 16 shows how 
very nearly identical the pairing history is in all three cases. For comparison, the effect 
on the clock of doubling the Reynolds number of the initial flow without interaction, 
shown on the same figure, is far more substantia1.t 

In  fact, none of the integrated measures of the progression of the spanwise-averaged 

t It can be seen on the figure that most of this effect occurs during roll-up 
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FIQURE 16. The pairing clock: angle 6' between line joining the two spanwise vortex centres and 
the z-axis as a function of time: +, case 7 ;  0, 9;  A, 10; is a purely two-dimensional case like 
(7) but with R = 100.  

base flow are seriously affected by the vigorous three-dimensional motion. For 
instance, the cat's-eyes are virtually identical at the same time; the history of the 
base-flow kinetic energy compared on figure 17 is very nearly so. 

The spanwise vorticity distribution SZ + w2 for case 10 is shown a t  r = 3.5 on figure 
18 for an (2, 2)-plane on which the amplitude of w2 is maximal. 

Our calculations thus give evidence that the base-flow sequential subharmonic 
instability and the resulting coalescence are quite robust. 

It should be noted that the initial conditions used have excluded the case of very 
strong and purely three-dimensional initial perturbations. These might lead to a very 
different kind of flow, since they would not provide the environment for a two- 
dimensional roll-up, and therefore neither pairing nor translative instabilities would 
follow. In  $5 we briefly report another calculation in which the initial perturbations 
are both indiscriminate and very large. We should also recall a striking experiment 
carried out by Breidenthal (1980) in which large spanwise perturbations were 
provided a t  the origin of a mixing layer by cutting a two-dimensional bevelled trailing 
edge so that the platform formed a square wave with a spanwise alternation of blunt 
bases and sharp trailing edges. The visualization of the mixed zone (by the optically 
visible product of a diffusion-controlled reaction between the two merging streams) 
revealed that, a few spanwise wavelengths downstream, the mixing layer recovered 
an essentially two-dimensional pairing structure. By contrast, when the velocity of 
the two merging streams was the same, the resulting wake was such that the spanwise 
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FIQURE 17. The kinetic energy of the spanwise-averaged flow as a function of time: 
+ and curve, case 7 ;  0, 9;  A, 10. 

structure imposed by the trailing edge survived with very little lateral transport 
throughout the visible length of the wake. Such observations cannot be accounted 
for by the calculations which we have presented. But the specific properties of pairing 
flows help explain why once the pairing instability is established it is only slightly 
affected by three-dimensional rivals. The most direct argument can be cast without 
reference to momentum or energy exchange : 

The vorticity equation that corresponds to (2.2 b)  and whose solution is shown in 
figures 15 (b,  c )  is 

where overbars denote spanwise averages. Now it has already been both argued and 
demonstrated from the numerical calculations that, in the intense field of strain 
created by D around the stagnation points, the only component of vorticity that 
can survive in time is that which is aligned with the direction of positive strain. Thus 
o, is essentially negligible in the braid region after the latter have formed, so that 
the first and last terms on the right-hand side of (4.1) are very small. Additionally, 
the surviving component of vorticity, as we have seen (figures l l b ,  14a) has a 
direction and a strength which vary little with distance along the braid. This braid 
(streamwise) vorticity is the main contributor to the local value of v. Thus v varies 
little with distance along the axis of the braid, so that the last remaining term 6 . Q v  
on the right of (4.1) is likely to be small also. So the interaction terms offer no 
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mechanism to renew the spanwise vorticity in the depleted braids. These terms are 
then all confined to the part of the mixing layer that in their absence would contain 
a substantial amount of spanwise vorticity. Furthermore, these are divergence terms ; 
they can be rewritten as 

where 6 = Z,a/ax + Z,a/az, so that their integral over the grid plane (x, z )  vanishes. 
Therefore within the confines of the core they merely transport the existing spanwise 
vorticity. It is inevitable that such transport aided by molecular diffusion and smaller 
scales of motion will render the distribution more uniform, thus decreasing somewhat 
the energy of the base flow, but since it alters neither the circulation nor the size of 
the spanwise vortices, it should perhaps be expected, that this spatially limited 
amount of turbulent-like diffusion does not affect the global dynamics of the 
interacting streamwise vortices. 

4.2. The effect of the coupling on the three-dimensional field 

It can be anticipated that the very modest alterations of the spanwise-averaged 
properties of the flow which occur in cases 9 and 10 lead only to small changes in 
the u-field. This is indeed the case. Figure 19 shows the ratio of E, to its initial value 
for cases 7 ,  9 and 10, and figure 20 is a plot of the circulation around the braids at 
the stagnation points for the same cases. (The loop is rectangular with a span = 2n//3.) 
Contour plots of w2,  161, p ,  and e3 are similarly almost identical. 
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FIQURE 19. Normalized value of E, for cases 7 (O), 9 (A) and 10 (0). 
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FIGURE 20. The value of the circulation r around the braid. For cases 7,  9 and 10, 
normalized by the circulation r, at 7 = 0. 
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5. Discussion of other simulations 
Four numerical studies of the three-dimensional development of a mixing layer 

have been reported recently by Riley & Metcalfe (1980), Cain, Reynolds & Ferziger 
(1981), Couet & Leonard (1980) and Brachet & Orszag (1982). 

Riley & Metcalfe and Cain et al. use similar pseudospectral methods and initial 
conditions in a simulation of a turbulent mixing layer. They decompose the velocity 
field into normal modes in x and y and allow a relatively large number of modes. The 
initial conditions assign an amplitude distribution in wavenumber space which is a 
discrete version of a chosen spectrum, shape the distribution in z to simulate a realistic 
field of turbulence in a shear flow, and assign random phases to the spectral 
components while insuring that the initial field is solenoidal. 

I n  addition Cain et al. provide in general both an eddy-viscosity model and alow-pass 
filter. The initial amplitude level is very high in Riley & Metcalfe and varies in Cain 
et al. The Reynolds number in Cain et al. is 15 in our notation, i.e. low enough (see 
Corcos & Sherman 1976) to affect seriously the roll-up amplitude and timescale. 
Because the emphasis was on the simulation of the statistical properties of a turbulent 
layer, few details of the realizations are given. I n  Cain et al. they consist in the 
distribution in the (2, 2)- and (z, y)-planes of identified particles initially located on 
the mesh points of a coarse grid in the plane z = 0. In  Riley & Metcalfe contours of 
constant spanwise vorticity are given a t  three times in two (z,z)-planes separated 
in the y-direction by half a grid length ; in spite of the very large initial perturbation 
amplitudes, in a short time of the order of r = 1.2, the contours of a characteristic 
roll-up appear. These contours are somewhat different at the two spanwise stations, 
though the location of the braids and of the cores are nearly the same. The maxima 
in the core seem to be displaced up and to  the right, down and to the left, much as 
in our simulation with a single spanwise wavenumber. The length of the grid did not 
allow pairing. 

Couet & Leonard employ a different method which makes use of a large number 
of initially spanwise vortex filaments with finite vortex cores and whose configurations 
are defined by the location a t  any time of 64 initially equidistant nodes along each 
vortex. The boundary conditions are periodic in x and y. The velocity is calculated 
from a Poisson equation after the vorticity attached to the filaments has been 
distributed by a smoothing algorithm within cubic cells (vortex-in-cell methods). A 
random initial lateral displacement of the filaments is prescribed. While viscosity is 
ignored in the Helmholtz equation, the vortex-in-cell method should be expected to 
introduce some numerical diffusion. Some useful inferences can be made from the 
published results and from a few additional graphical displays.? 

The figures consist of: 
( a )  the intersections with the central (z, 2)-plane a t  various times of the vortices 

that originally belonged to  a single row ; 
( b )  the projection on to  the (z, y)-plane of nodes of the vortices originally uniformly 

distributed in that plane ; and 
( c )  contours in the (y,z)-plane of x- and z-components of the streamwise vorti- 

city &. 
The sideviews in the (x, 2)-plane of the vortices indicate that a characteristic roll-up 

and the initiation of pairing both occur. The shape of the cores is similar to the outline 
of the spanwise vorticity distribution o2 + 0 in our calculations. The braids between 

t Kindly provided by A. Leonard. 
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the two main spanwise vortex cores rapidly lose vorticity and become very thin, which 
suggests that  the velocity field induced by the streamwise vorticity is weak next to 
the velocity induced by the main spanwise vortices in the same region. The contours 
across the braid of streamwise vorticity projections on to the (y, 2)- and (2, z)-planes 
show that the clockwise and counterclockwise vortices are nearly aligned, suggesting 
again that their circulation is moderate. This circulation increases rapidly during the 
early part of the calculation, and seems to level out later. The projection on to the 
(2, y)-plane of the nodes initially placed there shows a quasi-periodic distortion of the 
boundaries of the regions of accumulation which resembles Breidenthal’s (1981) 
‘wiggle’. The interpretation of these patterns (and a fortiori of the much sparser 
grid-particle patterns of Cain et al.) as the outline of the core is not straightforward 
and may be seriously misleading. Similarly, the quasi-periodic oscillation of the 
concentration trace in Breidenthal’s (1981) experiment is clearly not an indication 
that the flow is losing its basic two-dimensionality. However, these node or marker 
projections give an idea of the typical spanwise wavenumber /3 which seems to change 
little with time. In  Couet & Leonard /?/at) x 3, while in Cain et al. Plat )  x $. 

I n  Brachet & Orszag (1982), which came to our attention after this work was 
completed, pseudospectral methods are used to study in particular the translative 
instability discovered by Pierrehumbert & Widnall. The initial conditions, like ours, 
include only one or two two-dimensional modes and a single three-dimensional one. 
But the authors investigated a larger range of values of p. In  their calculations the 
initial amplitude of the two-dimensional fundamental mode was always several orders 
of magnitude larger than that of the other two perturbations, and in all cases but 
one the subharmonic amplitude was either zero or several orders of magnitude smaller 
than that of the three-dimensional mode. Thus the object of the study was primarily 
the three-dimensional evolution of a layer that  rolls up early and is essentially 
constrained not to pair. The results are therefore comparable to those for our cases 
1 4 .  

The authors find that the translational instability is approximately exponential 
and gives no sign of saturation or equilibration as the three-dimensional motion 
becomes large, They conclude that chaos results. They find that for p > 2 the growth 
rate of the energy of the three-dimensional motion is a steadily decreasing function 
of p for a3 and R fixed. They suggest that  for u2 = u3 = 0.4 the three-dimensional 
flow becomes stable for p > Pcritical x @. They find that the growth rate of the 
subharmonic (measured by the energy residing in the mode uiz) alone) is greater than 
that associated with the modes of the three-dimensional motion. Finally their results 
indicate that, even when the initial energy of the three-dimensional motion is lo5 
times larger than that of the subharmonic, the subharmonic growth rate is 
nearly unaffected by the development of the three-dimensional motion ( R e  = 400, 
ail) = 0.4, P/a3 = 0.5). 

These results supplement ours usefully and are consistent with them. One should 
note that only in the absence of a subharmonic of competitive initial amplitude do 
the computations in Brachet & Orszag lead to a progressive disorganization of the 
two-dimensional flow whose own instability has been arrested. It is very unlikely that 
a naturally perturbed layer would be provided exclusively with a single two- 
dimensional mode of disturbance (required for roll-up and therefore for translative 
instability) together with three-dimensional modes (required for the translative in- 
stability) without modes suitable for seeding of the faster-growing pairing 
instability. 

4-2 



94 G. M .  Corcos and S. J .  Lin 

6. Conclusions 
It was the hypothesis of Part 1 that in the mixing layer there exists a hierarchy 

of motions, of which the primary and controlling one is closely given by two-dimen- 
sional solutions of the equations of motion. Parts 1 and 2 have shown that while 
the initial instability ofparallel shear flow, the well-known Orr-Sommerfeld instability, 
causes the growth of both two- and three-dimensional disturbances (with a selectively 
greater growth rate for the more-nearly two-dimensional disturbances), this instability 
gives way to two distinctly different other types. The first, preferentially two- 
dimensional, is the sequential pairing instability, which causes the growth of the layer 
by the coalescence of spanwise vortices. The second, preferentially three-dimensional 
and discovered by Pierrehumbert & Widnall, can be expected to grow side by side 
with the pairing instability, but is both slower-growing and inhibited by the latter, 
a t  least through one pairing. That instability is strongly centred in the spanwise 
vortex cores. Thus it is likely that the strong streamwise vorticity that appears and 
persists in the central part of the braids, and which is responsible for the streamwise 
streaks in Bernal et al. (1980), is caused early on by the original (three-dimensional) 
shear instability rather than by the translative instability, and thereafter leads a fossil 
life.? 

One may surmise that, since the two-dimensional growth through successive 
pairings (which halve the value of a) is linear on the average, while the growth rate 
of the translative waves, even if we ignore the effect that pairing has on them, falls 
off progressively with increasing values of Pla, the three-dimensional motion that 
results from this type of flow should not succeed in altering the fundamental 
two-dimensional pairing mechanism through which the layer grows and which 
sustains all other modes and scales of motion. 

It should be noted that neither our calculations nor any other calculation or 
analysis reported so far give a good idea of a typical spanwise scale of, say, streamwise 
vorticity, or explain what determines that scale, since the weak filter offered by 
parallel-flow analysis is replaced later by an even broader filter as our work and that 
of Brachet & Orszag (1 983) show. Either nonlinear interaction ofwaves of neighbouring 
spanwise wavenumber (particularly difficult to study numerically over a finite 
domain) or the competitive advantage given by particular initial conditions may lead 
to a selective mechanism. 

This work has been supported by the U.S. Office of Naval Research under contract 
N.R. 062-665. 

t I t  seems paradoxical, as noted by a referee, that in those experiments the most clearly observed 
features of the three-dimensional instability should not be associated with the most-energetic 
manifestations of this instability. But the success of the visualization method used depends on a 
nonlinear feature of streamwise vorticity layers : their propensity to become concentrated into 
strong almost axially symmetric, vortices when they are stretched. This is discussed and illustrated 
in detail in Part 3 (Lin & Corcos 1984). Thus the visual contrast is a much more sensitive index 
of the intensity of the local gradients of streamwise vorticity than it is of its circulation or of the 
energy associated with it. In addition, the projection onto planes of the concentration-gradient- 
related optical contrast may give poor resolution, i.e. partial integration of gradients in convoluted 
regions such as the cores. 
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